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Abstract
In the framework of the resolvent approach, a so-called twisting operator is
introduced that is able, at the same time, to superimpose à la Darboux N solitons
to a generic smooth decaying potential of the nonstationary Schrödinger
operator and to generate the corresponding Jost solutions. This twisting
operator is also used to construct an explicit bilinear representation in terms of
the Jost solutions of the related extended resolvent. The main properties of the
Jost and auxiliary Jost solutions and of the resolvent are discussed.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

The Kadomtsev–Petviashvili equation in its version called KPI [1–3](
ut − 6uux1 + ux1x1x1

)
x1

= 3ux2x2 (1)

is a (2+1)-dimensional generalization of the celebrated Korteweg–de Vries (KdV) equation.
As a consequence, the KPI equation admits solutions that behave at space infinity like the
solutions of the KdV equation. For instance, if u1(t, x1) obeys KdV, then u(t, x1, x2) =
u1(t, x1 + µx2 + 3µ2t) solves KPI for an arbitrary constant µ ∈ R. Thus, it is natural to
consider solutions of (1) that are not decaying in all directions at space infinity but have
one-dimensional rays with behaviour of the type of u1. Even though KPI has been known
to be integrable for about three decades [2, 3], its general theory is far from being complete.
Indeed, the Cauchy problem for KPI with rapidly decaying initial data was resolved in [4–9]
by using the inverse scattering transform (IST) method on the basis of the spectral analysis of
the nonstationary Schrödinger operator

L(x, i∂x) = i∂x2
+ ∂2

x1
− u(x), x = (x1, x2), (2)
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that gives the associated linear problem for the KPI equation. However, it is known that the
standard approach to the spectral theory of the operator (2), based on integral equations for
the Jost solutions, fails for potentials with one-dimensional asymptotic behaviour.

In [10–15], the method of the ‘extended resolvent’ (or, for short, the method of resolvent)
was suggested as a way of pursuing a generalization of the IST that enables studying
the spectral theory of operators with nontrivial asymptotic behaviour at space infinity. In
[16–19] for the nonstationary Schrödinger and heat operators the case where there is only
one direction of nondecaying behaviour was considered. The starting point in solving the
problem was the embedding of the pure one-dimensional case in the two-dimensional spectral
theory, building the two-dimensional extended resolvent for a potential u(x) ≡ u1(x1). Then,
a potential u(x) = u1(x1) + u2(x), where u2(x) is an arbitrary decaying smooth function of
both spatial variables, was considered and the corresponding resolvent was constructed by
dressing the above resolvent for u(x) = u1(x1). Finally, all mathematical entities generalizing
the standard ones in IST, as Jost solutions and spectral data, were derived by a reduction
procedure from this dressed resolvent.

Here, we consider the case of a potential not decaying along multiple nonparallel rays,
which is substantially more complicated since we do not have the one-dimensional sample as
a guide to follow and we must construct directly the resolvent, without passing through the
embedding of one-dimensional entities in two dimensions.

Therefore, we are obliged to consider directly true bidimensional potentials. In [20], by
using recursively a binary Darboux transformation [21], not only a two-dimensional potential
ũ which describes N solitons [22] of the most general form [23] ‘superimposed’ to a generic
background but also its Jost solutions was constructed explicitly. However, this recursive
procedure does not seem to be easily generalizable to the construction of the corresponding
extended resolvent. On the other hand, it is known (see [24]) that, in the framework of the
extended resolvent approach, the whole hierarchy of time evolution equations related to L in
(2), which can be considered as infinitesimal Darboux transformations, can be obtained by
considering the similarity transformation L̃ = ζLζ † of the extended version L of L, where
ζ is a convenient unitary operator. Here, we show that, by using a twisted transformation
L̃ζ = Lζ † with ζ satisfying weaker conditions, one can bypass the recursive procedure and
build directly the final potential ũ and Jost solutions. Then, we use this operator ζ , that we
call twisting operator, to build directly the extended resolvent of L̃ as a bilinear form in terms
of the Jost solutions. The main properties of the Jost and the so-called auxiliary Jost solutions
and of the resolvent are studied.

In a forthcoming paper, following the method developed in [15–19], we generalize the
result obtained in this paper. Precisely, we consider the potential obtained by adding an
arbitrary bidimensional smooth perturbation to the potential describing N solitons, we construct
the corresponding extended resolvent by dressing that obtained in this paper and we derive the
corresponding inverse scattering problem.

2. Background theory

2.1. Extended operators and resolvent

In this section, we briefly review the basic elements of the extended resolvent approach. For
further details, we refer the interested readers to [10–16].

Let us consider the operators with kernel L(x, x ′) = L(x, i∂x)δ(x − x ′), where L(x, i∂x)

denotes a differential operator whose coefficients are smooth functions of x and let us introduce
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what we call the extension of these differential operators, i.e., to any differential operator L
we associate the operator L(q) with kernel

L(x, x ′; q) ≡ L(x, i∂x + q)δ(x − x ′) = eiq(x−x ′)L(x, x ′), (3)

where x = (x1, x2), x
′ = (x ′

1, x
′
2) ∈ R

2, and q = (q1, q2) ∈ C
2 and

qx = q1x1 + q2x2.

The q variable will play, in the following, the role of a spectral parameter and we use a boldface
character to emphasize that it is complex. By using the Fourier transform we can write

L(x, x ′; q) = 1

(2π)2

∫
dα e−iα(x−x ′)L(x, α + q), α = (α1, α2).

Then, it is natural to introduce more general operators A(q) with kernel

A(x, x ′; q) = 1

(2π)2

∫
dα e−iα(x−x ′)P(x, α + q) (4)

obtained by considering not just a polynomial L(x, q) in q but a tempered distribution P(x, q)

of the six real variables x, q� and q�. Note that

A(x, x ′; q) = eiq�(x−x ′)A(x, x ′; q), q ≡ q� (5)

and that A(x, x ′; q) belong to the space S ′ of tempered distributions of the six real variables
x, x ′ and q = (q1, q2). Since definition (4), up to the introduction of the spectral parameter q
by shifting α, coincides with the definition of a pseudo-differential operator we shall call the
operators belonging to the space S ′ extended pseudo-differential operators (or operators for
short) and P(x, q) their symbol.

In the following it is often useful to use instead of the symbol P(x, q) its Fourier transform
with respect to x, i.e.

A(p; q) = 1

(2π)2

∫
dx eipxP(x, q), p = (p1, p2).

From (4) and (5) it follows that A(p; q) is related to A(x, x ′; q) by

A(p; q) = 1

(2π)2

∫
dx

∫
dx ′ ei(p+q�)x−iq�x ′

A(x, x ′; q). (6)

Then, we consider A(x, x ′; q) and A(p; q) as the representation of the operator A(q),
respectively, in the x-space and in the p-space. The inverse of (6) is given by

A(x, x ′; q�) = 1

(2π)2

∫
dp

∫
dq� e−i(p+q�)x+iq�x ′

A(p; q). (7)

On the space of this operator we define the Hermitian conjugation as

A†(x, x ′; q) = A(x ′, x;−q), A†(p; q) = A(−p; q + p), (8)

in terms of kernels in x- or p-spaces. For generic operators A(q) and B(q) with kernels
A(x, x ′; q) and B(x, x ′; q) we introduce the standard composition law

(AB)(x, x ′; q) =
∫

dx ′′A(x, x ′′; q)B(x ′′, x ′; q), (9)

if the integral exists in terms of distributions. In terms of kernels A(p; q) and B(p; q) this
composition takes the form of a shifted convolution

(AB)(p; q) =
∫

dp′A(p − p′; q + p′)B(p′; q). (10)
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An operator A can have an inverse A−1 in the sense of this composition, i.e., such that
AA−1 = I or A−1A = I , where I is the unity operator in S ′, I (x, x ′; q) = δ(x − x ′), being
δ(x) = δ(x1)δ(x2) the two-dimensional δ-function (or I (p; q) = δ(p) in p-space).

Of course, the two representations in the x and in the p-space are equivalent and, in
principle, one could work always in one of them. However, it is often convenient to pass
from one representation to the other. Thus, the p-space is more suitable to study analyticity
properties, while boundedness is more easily studied in the x-space.

The extension of the nonstationary Schrödinger operator (2) is given by

L = L0 − U, (11)

where in the x-space

L0(x, x ′; q) = [
i
(
∂x2 + q2

)
+

(
∂x1 + q1

)2]
δ(x − x ′), U(x, x ′; q) = u(x)δ(x − x ′). (12)

The main object of our approach is the extended resolvent (or resolvent for short) M(q) of the
operator L(q), which is defined as the inverse of the operator L, i.e.,

LM = ML = I. (13)

Here, we omit to specify the additional conditions that guarantee uniqueness of the extended
resolvent as solution of (13), referring, say, to [18, 19].

For a real potential u(x), as we always consider in the following, we have

L† = L, M† = M. (14)

Now, let us consider in this section the case of a rapidly decaying potential u(x) in (12).
One of the main advantages of the resolvent approach is that the dressing operators can be

obtained directly from the resolvent by means of a truncation and reduction procedure. Thus,
here the dressing operators ν and ω are defined by

ν(p; q1) = (ML0)(p; q)|q=�(q1), ω(p; q1) = (L0M)(p; q)|q=�(q1+p1)−p, (15)

where we introduced the special two-component vector

�(k) = (k, k2). (16)

In fact these operators dress, in the sense proposed and developed by Zakharov–Shabat [2],
the operator L(q) and its resolvent M(q). More precisely, they admit the following bilinear
representation in terms of ν and ω

L = νL0ω, M = νM0ω, (17)

where L0 and M0 are the bare operators

L0(p; q) = δ(p)
(
q2 − q2

1

)
, M0(p; q) = δ(p)

q2 − q2
1

. (18)

Dressing operators are mutually adjoint

ν† = ω, (19)

mutually inverse

ων = I, (20)

νω = I, (21)

and obey the equations

Lν = νL0, ωL = L0ω. (22)
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The kernels of these operators in p-space obey asymptotic

lim
q1→∞ ν(p; q) = δ(p), lim

q1→∞ ω(p; q) = δ(p), (23)

are independent of q2 and analytic functions of the variable q1 in the upper and lower half
planes.

Spectral data and the inverse problem can be formulated in this operatorial approach.
Here, we do not give details but only the main formulae, which will be useful in the following.
Let ν± and ω± denote the operators with kernels being the limiting values of ν(p; q) and
ω(p; q) at the real q1-axis from above and below

ν±(p; q1) = ν(p; q1� ± i0), ω±(p; q1) = ω(p; q1� ± i0). (24)

Then we get the relations

ν± = ν∓F∓, ω± = F±ω∓, (25)

where we introduced the spectral data

F± = ω±ν∓. (26)

By construction the kernels F±(p; q) depend on three real variables p1, p2 and q1� and thanks
to (19)–(22) these operators obey

L0(q)F± = F±L0(q), when q1 = 0, (27)

(F±)† = F±, (28)

F +F− = I. (29)

By means of the last equality and (23) it can be shown that the kernels F±(p; q) have the
representation

F±(p; q) = δ(p) + δ(p2 − p1(p1 + 2q1�))f ±(p1 + q1�, q1�), (30)

where the functions f ±(p1, q1�) depend only on two real variables.

2.2. Hat-kernels, Green’s functions and Jost solutions

Let us associate with any operator A(q) with kernel A(x, x ′; q) its ‘hat-kernel’

Â(x, x ′; q) = eq(x−x ′)A(x, x ′; q). (31)

If A(q) is an extended differential operator L(q) then this procedure is the inverse of (3), i.e.,
L̂(x, x ′; q) = L(x, x ′), while for a generic operator the hat-kernel can continue to depend on
q. For any extended differential operator L(q) and for any (not necessary differential) operator
B(q) the following relations hold:

(L̂B)(x, x ′; q) = L(x, ∂x)B̂(x, x ′; q),

(B̂L)(x, x ′; q) = Ld(x ′, ∂x ′)B̂(x, x ′; q),

where Ld is the operator dual to L. In particular, by (13) we have

L(x, ∂x)M̂(x, x ′; q) = Ld(x ′, ∂x ′)M̂(x, x ′; q) = δ(x − x ′),

so that the hat-kernel of the resolvent defines a family of Green’s functions depending on
the bidimensional parameter q. In particular, the Jost solutions are defined by means of the
following Green’s function depending on a complex spectral parameter k:

G(x, x ′, k) = M̂(x, x ′; ��(k)), (32)
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with the vector �(k) defined as in (16), while the advanced/retarded solutions are defined by
the Green’s functions G±(x, x ′) obtained by the following limiting procedure:

G±(x, x ′) = lim
q2→±0

lim
q1→0

M(x, x ′; q). (33)

The Jost solution 	(x, k) and its dual 
(x, k) are defined by

	(x, k) =
∫

dx ′ e−i�(k)x ′Ld
0(x

′, ∂x ′)G(x, x ′, k) (34)


(x ′, k) =
∫

dx ei�(k)xL0(x, ∂x)G(x, x ′, k), (35)

or by using definitions (15) in terms of the dressing operators by

	(x, k) = e−i�(k)xχ(x, k), 
(x, k) = ei�(k)xξ(x, k), (36)

where

χ(x, q1) =
∫

dp e−ipxν(p; q1), ξ(x, q1) =
∫

dp e−ipxω(p; q1 − p1). (37)

The q2 independence of the kernels ν(p; q) and ω(p; q) implies, thanks to (7) and (31),
that the corresponding hat-kernels ν(x, x ′; q) and ω(x, x ′; q) are independent of q2 and are
proportional to δ(x2 − x ′

2). Thus, instead of (36) and (37) we get relations

	(x, q1) =
∫

dy ν̂(x, y; q1�) e−i�(q1)y, 
(x, q1) =
∫

dy ei�(q1)yω̂(y, x; q1�), (38)

Writing (13) in the form M = M0 +M0UM one can derive from (34) and (35) the standard
integral equation for the Jost solution in the case of a smooth potential rapidly decaying at
space infinity

	(x, k) = e−i�(k)x +
∫

dx ′ G0(x, x ′, k)u(x ′)	(x ′, k), (39)

where

G0(x, x ′, k) = sgn x2

2π i

∫
dα θ(αk�x2) ei�(α−k)(x−x ′)

is the Green’s function, introduced in [5]. In our approach, this Green’s function follows
directly from the second equality in (18), transformation (7) and definition (32). Solvability
of this integral equation under some small norm assumptions was proved in [8] and thanks to
(39) it is easy to show that χ(x, k) has the asymptotic behaviour

lim
x→∞ χ(x, k) = 1. (40)

Properties of the dressing operators lead to corresponding properties of the Jost solutions.
Thus (19) gives

	(x, k) = 
(x, k), χ(x, k) = ξ(x, k), k ∈ C. (41)

Property (23) is equivalent to

lim
k→∞

χ(x, k) = 1, lim
k→∞

ξ(x, k) = 1, (42)

relations (20) and (21) can be considered as scalar product and completeness of the Jost
solutions

1

2π

∫
dx1	(x, k)
(x, k + α) = δ(α), k ∈ C, α ∈ R, (43)
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1

2π

∫
dk�	(x, k)
(y, k)

∣∣∣∣
x2=y2

= δ(x1 − y1); (44)

and equalities (22) are equivalent to the nonstationary Schrödinger equation and its dual:

L(x, ∂x)	(x, k) = 0, Ld(x, ∂x)
(x, k) = 0. (45)

The Jost solutions are analytic in the complex plane of the spectral parameter k, k� 	= 0.
Using for the boundary values at the real k-axis notations of the type (24) we get from (25)
and (30) the standard [5] nonlocal Riemann–Hilbert problem

	±(x, k) = 	∓(x, k) +
∫

dα 	∓(x, α)f ∓(α, k), k ∈ R. (46)

3. Twisting transformation

Here, we construct a two-dimensional potential together with its Jost solutions which describes
N solitons [22, 23] ‘superimposed’ to a generic background by using a twisted transformation
L̃ζ = ζL from the extended differential operator L in (11) to a new operator L̃ of the same
form obtained by means of an operator ζ which is isometric but not necessarily unitary. The
use of the twisting operator ζ allows us, bypassing the usual procedure consisting in applying
recursively binary Darboux transformations, to get directly not only the Jost and auxiliary Jost
solutions but also the extended resolvent, which results to be a bilinear expression in terms of
these Jost and auxiliary Jost solutions.

3.1. Properties of twisting operator ζ

Let us consider twisting the operator L in (11) to a new operator L̃ of the same kind

L̃ = L0 − Ũ , Ũ (x, x ′; q) = ũ(x)δ(x − x ′), (47)

by means of an operator ζ according to the formula

L̃ζ = ζL. (48)

We consider a potential u(x) in L which is real, smooth and rapidly decaying at space infinity
and we search for a ζ such that the new potential ũ(x) is also real and smooth, while condition
of rapid decaying is not imposed. Note that since L and L̃ are both self-adjoint from (48) it
follows that

ζ †L̃ = Lζ †. (49)

In addition we require that ζ obeys the conditions

(I) the operator ζ is isometric

ζ †ζ = I, (50)

but not necessarily unitary;
(II) the kernel ζ(p; q) is independent of q2,

ζ(p; q) = ζ(p; q1); (51)

(III) the kernel ζ(p; q) obeys the asymptotic condition

lim
q1→∞ ζ(p; q) = δ(p). (52)
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Then, a specific transformation ζ is chosen by fixing its analyticity properties in q1.
Note that because ζ is not unitary the operator

P = I − ζ ζ † (53)

is not zero and since it satisfies

P † = P (54)

and, thanks to (50),

P 2 = P, (55)

it is an orthogonal projector.
We fix the analyticity properties of ζ by requiring that it generates not only the new

potential ũ via (48) but also the new dressing operators ν̃ and ω̃. In fact, taking into account
(22) we get by (48) and (49)

L̃ζ ν = ζνL0, ωζ †L̃ = L0ωζ †,

and, therefore, the operators ν̃ and ω̃ defined by

ν̃τ = ζν, (56)

τ †ω̃ = ωζ †, (57)

for any operator τ commuting with L0 satisfy the equations

L̃̃ν = ν̃L0, ω̃L̃ = L0ω̃ (58)

analogous to the equations (22) satisfied by dressing operators ν and ω of L. Since ν̃ and ω̃

are mutually adjoint

ν̃† = ω̃, (59)

we can limit ourselves to consider ν̃ and say that ν̃ can be considered the new dressing operator
of L̃ if the operator τ and consequently ζ is chosen in such a way that the kernel of the ν̃ in
p-space is

(IV) independent of q2

ν̃(p; q) = ν̃(p; q1), (60)

(V) is an analytic function of the variable q1 in the upper and lower half planes, continuous
on the two sides of the real axis and obeys the asymptotic behaviour

lim
q1→∞ ν̃(p; q) = δ(p). (61)

Since ν, ω, and ζ by (II), are independent of q2 we deduce from (IV) that also τ must be
independent of q2 and, then, since τ commutes with L0, that its kernel has the form

τ(p; q) = δ(p)τ(q1). (62)

Moreover, from (V) we get that τ(q1) has asymptotic behaviour

lim
q1→∞ τ(q1) = 1. (63)

Taking into account (20) and (50), we get from (56) and (57) the scalar product of the new
dressing operators

ω̃ν̃ = T −1, (64)
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where we introduced the self-adjoint operator

T = ττ † (65)

with kernel

T (p; q) = δ(p)t (q1). (66)

Thanks to the composition law (10) and definition (8)

t (q1) = τ(q1)τ (q1). (67)

From (64), thanks to (V), we deduce that 1/t (q1) and therefore 1/τ(q1) must be chosen to be
a function analytic in the upper and lower half q1-planes and continuous on the two sides of
the real axis. Therefore, we assume that

(VI) τ(q1) is meromorphic in the upper and lower half planes without zeros and with a finite
number of poles and satisfies asymptotic (63).

Consequently, t (q1), which plays the role of transmission coefficient, is analytic in the
upper and lower half q1-planes, continuous on the two sides of the real axis with no zeros and
with poles at the poles of τ(q1) and τ(q1).

The completeness relation of the new dressing operators, which will play a crucial role
in the following, can be written in terms of T and the projection operator P. In fact from (53),
(56) and (57), we get

ν̃T ω̃ + P = I. (68)

It is also worth to mention that the operator P annihilates the new dressing operators. Indeed,
from (64) and (68) we have

P ν̃ = ω̃P = 0. (69)

Finally, by using the completeness relation (21) from (56) we have

ζ = ν̃τω (70)

and, once given an operator τ satisfying the above described conditions, the analyticity
properties of ζ are fixed and consequently ζ itself. However, in determining the analyticity
properties of ζ we have not yet required that also the new dressing operators ν̃ and ω̃ satisfy
nonlocal Riemann–Hilbert problems analogous to them satisfied by ν and ω in (25). This will
be done in the next section.

3.2. Transformed continuous spectrum

In order to describe the discontinuity at the real axis in the complex q1-plane of the twisting
operator ζ and of the new dressing operators and Jost solutions, we use notations (24) and
mention that for any operator A by definition (8) we have

(A±)† = (A†)∓. (71)

From (56) in the limits q1 → ±0 we get

ν̃±τ± = ζ±ν±. (72)

Multiplying from the left by (ζ †)±, thanks to (50), we get

ν± = (ζ †)±ν̃±τ±. (73)

Inserting (25) into the rhs of (72) and then inserting ν∓ from (73) in the obtained equation we
get

ν̃±τ± = ζ±(ζ †)∓ν̃∓τ∓F∓.
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If we impose that ν̃ satisfies a Riemann–Hilbert problem analogous to that in (25) satisfied by
ν we deduce, taking into account that according to (69) ν̃∓ has a left annihilator P ∓, that

ζ±(ζ †)∓ = c1I + c2(I + P ∓) = c1I + c2ζ
∓(ζ †)∓

with c1 and c2 being constant. Then, since ζ satisfies the asymptotic property (52), thanks to
(50), we derive

ζ + = ζ−, (74)

that is

(VII) the twisting operator ζ is continuous on the real axis of the q1-plane.

Let us, now, introduce the operator

F̃± = τ±F±(τ±)†. (75)

Its kernel equals (see (30))

F̃±(p; q) = δ(p)|τ±(q1�)|2 + δ(p2 − p1(p1 + 2q1�))f̃ ±(p1 + q1�, q1�), (76)

where

f̃ ±(p1, q1�) = τ±(p1)f
±(p1, q1�)τ±(q1�). (77)

Thanks to properties of τ±, the operators F̃± have properties (27) and (28). Taking into
account (71) and (66) we finally get

ν̃±T ± = ν̃∓F̃∓, T ±ω̃± = F̃±ω̃∓, (78)

where the second equation is obtained by conjugation. Comparison of (78) with (25) motivates
the definition of F̃± as the continuous spectrum of the new potential ũ. Again, thanks to (71)
and (66), we see that relations (29) and (26) are modified, respectively, as

(T ±)−1F̃±(T ∓)−1F̃∓ = I (79)

and as

ω̃±ν̃∓ = (T ±)−1F̃±(T ∓)−1. (80)

In the case where the background potential u(x) is identically equal to zero, the second
term in (30) is absent and F± = I . It is natural to preserve this property for the new spectral
data, so we impose

(VIII) unitarity:

|τ±(q1�)| = 1, (81)

that in terms of operators means that

(τ±)† = (τ±)−1.

In analogy with (36) and (37), we define

χ̃ (x, q1) =
∫

dp e−ipxν̃(p; q1), ξ̃ (x, q1) =
∫

dp e−ipxω̃(p; q1 − p1), (82)

	̃(x, k) = e−i�(k)x χ̃(x, k), 
̃(x, k) = ei�(k)x ξ̃ (x, k), (83)

where notation (16) is used. These functions can also be defined by relations generalizing
(38). Indeed, taking into account that the function τ(q1) has no zeroes we have by (56) and
(57) that ν̃(p; q1) = (ζν)(p; q)/τ(q1) and ω̃(p; q1) = (ωζ †)(p; q)/τ(p1 + q1). Inserting
these equalities in (82) we derive by (6), (31) and (38) that
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	̃(x, q1) = 1

τ(q1)

∫
dy ζ̂ (x, y; q1�)	(y, q1), (84)


̃(x, q1) = 1

τ(q1)

∫
dy 
(y, q1)̂ζ

†(y, x; q1�). (85)

In what follows we prove that 	̃ is the Jost solution of operator L̃ and 
̃ is the Jost
solution of the dual operator. Thanks to (59), we have, like in (41)

	̃(x, k) = 
̃(x, k), χ̃(x, k) = ξ̃ (x, k), k ∈ C. (86)

Under condition (V), functions 	̃(x, k), 
̃(x, k), χ̃(x, k) and ξ̃ (x, k) are analytic with respect
to the variable k ∈ C with only discontinuity at the real axis and functions χ̃(x, k), ξ̃ (x, k)

obey asymptotic condition (42). Equation (78) enables us to write relations between boundary
values 	̃±(x, k) and 
̃±(x, k) of these functions on the real axis. Indeed, taking into account
definition (10) of composition we get by (66), (76) and (81)

	̃±(x, k)t±(k) = 	̃∓(x, k) +
∫

dα 	̃∓(x, α)f̃ ∓(α, k), k ∈ R, (87)

that modifies relation (46), valid in the case of rapidly decaying potential u(x).

3.3. Twisting transformation of the resolvent

The operator ζ , once obtained the transformed operator L̃, can also be used to get the
corresponding resolvent M̃ = L̃−1. From (48) and the definition of the resolvent in (13) we
have that M̃ and M are related by the same relation as L̃ and L, i.e.,

M̃ζ = ζM. (88)

Multiplying (48) and (88) from the right by ζ † and recalling definition (53) of P we get

L̃ = ζLζ † + L�, M̃ = ζMζ † + M� (89)

with

L� = L̃P = P L̃, M� = M̃P = PM̃, (90)

where the second terms in both equations follow by Hermitian conjugation. Since P is a
projection operator we directly get

M�P = PM� = M�, (91)

L�M� = M�L� = P. (92)

Vice versa, for M� satisfying (91) and (92) the operator M̃ in (89) is the resolvent of L̃. In
fact we have by (50), (13) and (92)

L̃M̃ = (ζLζ † + L�)(ζMζ † + M�) = I + ζLζ †M� + L�ζMζ †. (93)

To prove that the last two terms are zero we first note that, thanks to (50) and (53), we have

Pζ = ζ †P = 0,

and, then, that by (90) ζ †M� = ζ †PM̃ = 0 and as well L�ζ = L̃P ζ = 0. So

L̃M̃ = M̃L̃ = I, (94)

where the second equation is obtained by conjugation.
In conclusion, in order to obtain M�, and consequently M̃ via (89), one can, first, find the

general solution X (belonging to our space of operators) of the system

PX = X, XP = X, (95)

and, then, M� will be the special X satisfying

L�X = XL� = P. (96)
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3.4. Construction of operator ζ

In correspondence with condition (VI) let τ(q1) have poles at q1 = λ1, . . . , λN and let us
suppose, for simplicity, that they are simple and that

λm 	= λn, λm 	= λn, ∀m 	= n

λn� 	= 0, ∀n.
(97)

From properties (VI) and (VIII) of τ by dispersion relation we get that

τ(q1) =
N∏

n=1

(
q1 − λn

q1 − λn

)θ(−q1�λn�)

≡
N∏

n=1

q1 − λn� + i|λn�| sgn q1�
q1 − λn

. (98)

For the residua of this function we have

τm = res
q1=λm

τ (q1) ≡ −2iλm�
N∏

n=1,n	=m

(
λm − λn

λn − λm

)θ(λm�λn�)

. (99)

From (67) we get for the transmission coefficient

t (q1) =
N∏

n=1

(
q1 − λn

q1 − λn

)sgn(q1�λn�)

≡
N∏

n=1

(
q1 − λn� + i|λn�|
q1 − λn� − i|λn�|

)sgn(q1�)

. (100)

The residua at the poles at q1 = λm and q1 = λm are given by

tm = res
q1=λm

t (q1) ≡ 2iλm�
N∏

n=1,n	=m

(
λm − λn

λm − λn

)sgn(λm�λn�)

, (101)

res
q1=λm

t (q1) = tm. (102)

An alternative expression is given by

tm = τ(λm)τm. (103)

Now, we have all we need for building the twisting operator ζ . First, we use (21) to
rewrite (56) as

ζ = ν̃τω. (104)

Now, from the analyticity properties in q1 of ν̃ stated in (IV), (V), of τ as given in (98) and
of ω, from the continuity of ζ on the real q1-axis stated in (VII) and the asymptotic property
of ζ(p; q1) we have that ζ(p; q) satisfies the following integral representation:

ζ(p; q) = δ(p) +
N∑

n=1

τn

∫
dp′ ν̃(p − p′; λn)ω(p′; λn − p′

1)

q1 + p′
1 − λn

. (105)

The kernel ζ(p; q) turns out to be piecewise analytic with discontinuities along the lines
q1� = −λn� and its results depend only on the values of ν̃(p; q1) at q1 = λn. Therefore, in
order to get ζ it is sufficient to construct the new dressing operator ν̃ at the special values of
poles of τ .

The kernel of ζ in the x-space is given by (6). Then, for its hat-kernel (see (31)) we get

ζ̂ (x, x ′; q) = δ(x − x ′) − i sgn(x1 − x ′
1)δ(x2 − x ′

2)

×
N∑

n=1

τnθ((q1 + λn�)(x1 − x ′
1))	̃(x, λn)
(x ′, λn), (106)
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where we used notations (36), (37), (82) and (83). By conjugation (see (8), (41) and (86)) we
derive

ζ̂ †(x, x ′; q) = δ(x − x ′) − i sgn(x1 − x ′
1)δ(x2 − x ′

2)

×
N∑

n=1

τnθ((q1 − λn�)(x1 − x ′
1))	(x, λn)
̃(x ′, λn). (107)

In order to complete the construction of ζ we have to impose the isometry condition (50).
Using (106) and (107) we get that this condition is equivalent to

δ(x2 − x ′
2)

N∑
n=1

τnθ((q1 − λn�)(x1 − x ′
1))	(x, λn)
̃(x ′, λn)

+ δ(x2 − x ′
2)

N∑
n=1

τnθ((q1 + λn�)(x1 − x ′
1))	̃(x, λn)
(x ′, λn)

= i sgn(x1 − x ′
1)δ(x2 − x ′

2)

N∑
m,n=1

τmτn	(x, λm)
(x ′, λn)

× sgn(q1 − λm�) sgn(q1 + λn�)

∫
dy1θ((q1 − λm�)(x1 − y1))

× θ((q1 + λn�)(y1 − x ′
1))
̃(y, λm)	̃(y, λn)

∣∣∣∣
y2=x2

.

Let us, now, introduce the matrix

�(x) =
∥∥∥∥∥τmτn

∫ (λm+λn)�∞

x1

dy1 
̃(y, λm)	̃(y, λn)

∣∣∣∣
y2=x2

∥∥∥∥∥
N

m,n=1

, (108)

where the factor (λm + λn)� in the limit of integration defines the sign of the infinity. Thanks
to (83), it is easy to check that these integrals are well defined if ξ̃ (x, λm) and χ̃(x, λn) are
bounded at space infinity, and that by (86) this matrix is Hermitian

�mn(x) = �nm(x). (109)

Thus,

τmτn
̃(x, λm)	̃(x, λn) = −∂x1�mn(x) (110)

and the above condition is simplified to

N∑
m=1

θ((q1 − λm�)(x1 − x ′
1))	(x, λm)

[
τm
̃(x ′, λm) − i

N∑
n=1

�mn(x
′)
(x ′, λn)

]

+
N∑

m=1

θ((q1 + λm�)(x1 − x ′
1))

[
τm	̃(x, λm) + i

N∑
n=1

	(x, λn)�nm(x)

]
×
(x ′, λm) = 0,

where x2 = x ′
2. The function in the lhs is piecewise constant with respect to q1, so this

condition is equivalent to the equalities

	̃(x, λm) = 1

iτm

N∑
n=1

	(x, λn)�nm(x), (111)
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̃(x, λm) = i

τm

N∑
n=1

�mn(x)
(x, λn). (112)

By (106) in order to construct the hat-kernel of the operator ζ , we have to determine the
functions 	̃(λm) and 
̃(λm). Thanks to (111) and (112) this means that we have to determine
the matrix �mn. For this sake we insert these equations in (110), which gives

∂x1�mn(x) = −
N∑

m′,n′=1

�mm′(x)
(x, λm′)	(x, λn′)�n′n(x),

that under assumption of invertibility of the matrix �(x) can be rewritten as

∂x1�
−1
mn(x) = 
(x, λm)	(x, λn). (113)

Let us introduce in analogy with (108) the matrix

Bmn(x) =
∫ x1

−(λm+λn)�∞
dy1 
(y, λm)	(y, λn)

∣∣∣∣
y2=x2

, (114)

where again the limits of integration are uniquely determined by the asymptotic behaviour of
	(x, λm) and 
(x, λn) given by (36) and (40). Moreover,

lim
x→∞ Bmn(x) e−i(�(λm)−�(λn))x = −i

λm − λn

and by (41) this matrix is Hermitian,

Bmn(x) = Bnm(x).

Now (113) gives

�mn(x) = (B(x) + C)−1
mn, (115)

where we introduced the matrix C = ‖cmn‖N
m,n=1 with matrix elements independent of x1.

Let C± denote the matrices constructed from C as

C± = ‖cmn;m, n = 1, . . . , N;±λm� > 0,±λn� > 0‖ (116)

and C+ = I (C− = I ) if all λn� are negative (positive). In [20] it was shown that if the matrix
C is Hermitian and obeys the positiveness condition

±C± > 0 (117)

the determinant det(B(x) + C) has no zeros on the x-plane including infinity (for the case of
zero background potential this result was obtained in [23]). Thus, the matrix �(x) given by
(115) exists for any x and the rhs of (111) and (112) are given explicitly in terms of the Jost
solutions of the background potential u(x). Such matrix �(x) is Hermitian indeed, so that by
(41) equalities (111) and (112) give a special case of (86) for k = λm.

Finally, inserting (111) in (106) and (112) in (107) we get the hat-kernels of ζ , ζ †.
Multiplying them by e−q(x−x ′) (see (31)) we get kernels

ζ(x, x ′; q) = δ(x − x ′) − sgn(x1 − x ′
1)δ(x2 − x ′

2) e−q1(x1−x ′
1)

×
N∑

m,n=1

θ((q1 + λn�)(x1 − x ′
1))	(x, λm)�mn(x)
(x ′, λn), (118)

ζ †(x, x ′; q) = δ(x − x ′) + sgn(x1 − x ′
1)δ(x2 − x ′

2) e−q1(x1−x ′
1)

×
N∑

m,n=1

θ((q1 − λm�)(x1 − x ′
1))	(x, λm)�mn(x

′)
(x ′, λn), (119)

proving by (41) and (109) that they are mutually conjugate in the sense of (8).
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3.5. Transformed dressing operators and Jost solutions

By using the constructed twisting operator we can obtain the dressing operators by (56) and
(57), while expressions for functions introduced in (83) follow from (84) and (85). Indeed,
inserting (118) and (119) in these relations, we get

	̃(x, k) = 1

τ(k)

[
	(x, k) −

N∑
m,n=1

	(x, λm)�mn(x)βn(x, k)

]
, (120)


̃(x, k) = 1

τ(k)

[

(x, k) −

N∑
m,n=1

βm(x, k)�mn(x)
(x, λn)

]
, (121)

where we denoted

βn(x, k) =
∫ x1

−(k+λn)�∞
dy1 
(y, λn)	(y, k)

∣∣∣∣
y2=x2

, (122)

so that by (114)

Bmn(x) = βm(x, λn) = βn(x, λm).

Thanks to the properties of the Jost solutions 	 and 
, the functions βn(k) are analytic
in the complex domain of k with the exception of the real axis and of a pole at k = λn, where
by (43)

res
k=λn

βn(x, k) = i.

By (99) this proves that 	̃(x, λm) (
̃(x, λm)) given in (111) (correspondingly (112)) are values
at k = λm (at k = λm) of (120) (correspondingly (121)).

Taking into account the well-known property of the determinants of bordered matrices

1

det �n

∣∣∣∣�n �∗,n+1

�n+1,∗ γn+1,n+1

∣∣∣∣ = γn+1,n+1 − �n+1,∗�
−1
n �∗,n+1,

it is easy to see that (120) is exactly the Jost solution constructed in [20] as result of N
successive ‘binary’ Bäcklund transformations. It is annulated by the operator

L̃(x, i∂x) = i∂x2
+ ∂2

x1
− ũ(x), (123)

iff the matrix C in (115) is also independent on x2. Correspondingly, 
̃(x, k) is the Jost
solution of the dual operator. In (123) the new potential (cf (2)) is given by means of the
well-known [21] relation

ũ(x) = u(x) + 2∂2
x1

log det �(x). (124)

We proved in [20] that this potential is smooth, real and finite for all x under condition (117)
and that it decays in all directions on the x-plane with the exception of a finite number of
directions x1 − 2λj�x2 = const, where it tends to a unidimensional soliton. It was also
proved there that χ̃(x, k) (see (83)) is a bounded function of its variables, analytic in k with
a discontinuity at the real axis, and obeying the asymptotic condition (42), while instead of
(40), we have

lim
x1→−k�∞

χ̃ (x, k) = 1, lim
x1→k�∞

χ̃(x, k) = 1

t (k)
. (125)

The Jost solutions given by (120) and (121) obviously obey (86). Then properties of ξ̃ (x, k)

are the same up to the asymptotic

lim
x1→−k�∞

ξ̃ (x, k) = 1

t (k)
, lim

x1→k�∞
ξ̃ (x, k) = 1, (126)

where we used that by (67) t (k) = t (k).
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Summarizing, we have that kernels ζ(x, x ′; q), ζ †(x, x ′; q) and ν̃(p; q), ω̃(p; q) (as given
by (82)) belong to the space S ′(R6), so they define operators in the sense of definitions given
in section 2. Moreover, these operators obey all conditions (II)–(V) that were imposed.
Asymptotic behaviour (125) and (126) shows that the values of the Jost solutions at the poles
of t (k), like in the one-dimensional case, have special relevance. Thus in addition to the values
given in (111) we have to consider 	(x, λj ). Thanks to (122) and (115) we get from (120)

	̃(x, λj ) = 1

τ(λj )

N∑
m,n=1

	(x, λm)�mn(x)cmj .

then by (100), (103), and (111), (112)

	̃(x, λm) = i

tm

N∑
n=1

	̃(x, λn)τncnmτm, (127)


̃(x, λm) = 1

itm

N∑
n=1

τmcmnτn
̃(x, λn). (128)

Using these equalities we get
N∑

n=1

{tn	̃(x, λn)
̃(x ′, λn) + tn	̃(x, λn)
̃(x ′, λn)} = 0. (129)

Relation (127) together with (87) and the first equality in (42) close the formulation of the
inverse problem for the Jost solution 	̃(x, k). Analogously, (128), (87) and the second equality
in (42) give the inverse problem for the dual Jost solution 
̃(x, k).

3.6. Boundedness of 	̃(x, λn), 	̃(x, λn) and their dual

Here, we prove that the Jost solutions 	̃(x, λn), 	̃(x, λn) and 
̃(x, λn), 
̃(x, λn) are bounded
when x tends to infinity, while specific asymptotic behaviour essentially depends on the
direction of the limiting procedure. Let us note that 	̃(x, λn) and 	̃(x, λn) can be written as

	̃(x, λn) = e��(λn)x−i��(λn)x χ̃(x, λn), 	̃(x, λn) = e−��(λn)x+i��(λn)x χ̃(x, λn),

where χ̃(x, λn) and χ̃ (x, λn) are known to be bounded. In the limit x → ∞ along a
direction of the x-plane some of the exponents e−��(λn)x are increasing, some are decreasing
or bounded. Taking into account that new potential, Jost solutions and spectral data by
construction are symmetric functions of λ1, . . . , λN , we renumber them in a way that, say
e−��(λn)x for n = 1, . . . , s − 1 are decreasing or constant and e−��(λn)x for n = s, . . . , N

are increasing, where s = 1, . . . , N + 1 is a number depending on the direction on the x-
plane. Then 	̃(x, λn) are decreasing for n = s, . . . , N and 	̃(x, λn) are bounded when
n = 1, . . . , s − 1. In order to consider the complementary intervals we write (127) for m � s

in the form
N∑

n=s

	̃(x, λn)τncnm = tm

iτm

	̃(x, λm) −
s−1∑
n=1

	̃(x, λn)τncnm.

Thanks to conditions (117) matrix C cannot have zero eigenvalue. Then the same is valid
for the matrix ‖cmn‖N

m,n=s in the lhs of this equality. Taking into account that all terms in the
rhs are bounded, we conclude that 	̃(x, λn) are bounded also in the interval n = s, . . . , N

and then for all n. Now by (127) the same is valid for 	̃(x, λn). Boundedness of 
̃(x, λn),

̃(x, λn) follows by conjugation.
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4. Transformed resolvent

4.1. Operator P and completeness relation

We already mentioned in section 3.1 the essential role played by the operator P. Here, we
derive an explicit expression for its kernel and present its properties. Inserting (106) and (107)
in (53) and using (114) we get

P̂ (x, x ′; q) = i sgn(x1 − x ′
1)δ(x2 − x ′

2)

N∑
m=1

τmθ((q1 + λm�)(x1 − x ′
1))

×	̃(x, λm)

[

(x ′, λm) + i

N∑
n=1

τn
̃(x ′, λn)Bmn(x
′)

]

+ i sgn(x1 − x ′
1)δ(x2 − x ′

2)

N∑
n=1

τnθ((q1 − λn�)(x1 − x ′
1))

×
[
	(x, λn) − i

N∑
m=1

τm	̃(x, λm)Bmn(x)

]

̃(x ′, λn)

By (111) 	(x, λn) = i
∑N

m=1 τm	̃(x, λm)(�(x))−1
mn, so thanks to (115) and (127)

	(x, λn) − i
N∑

m=1

τm	̃(x, λm)Bmn(x) = tn

τ n

	̃(x, λn).

Thanks to this equality and its complex conjugate we get

P̂ (x, x ′; q) = iδ(x2 − x ′
2) sgn(x1 − x ′

1)

×
N∑

n=1

[tnθ((q1 − λn�)(x1 − x ′
1))	̃(x, λn)
̃(x ′, λn)

+ tnθ((q1 + λn�)(x1 − x ′
1))	̃(x, λn)
̃(x ′, λn)].

The form of this expression shows a discontinuity of the rhs at x1 = x ′
1, while thanks to

(129) the actual discontinuity is absent. In order to exploit this fact directly we write

P̂ (x, x ′; q) = iδ(x2 − x ′
2)θ(q1)

×
N∑

n=1

{tn[θ(λn�)θ(|q1| − |λn�|)θ(x1 − x ′
1) + θ(−λn�)θ(x1 − x ′

1)

− θ(λn�)θ(|λn�| − |q1|)θ(x ′
1 − x1)]	̃(x, λn)
̃(x ′, λn)

+ tn[θ(λn�)θ(x1 − x ′
1) + θ(−λn�)θ(|q1| − |λn�|)θ(x1 − x ′

1)

− θ(−λn�)θ(|λn�| − |q1|)θ(x ′
1 − x1)]	̃(x, λn)
̃(x ′, λn)} + h.c.,

where Hermitian conjugation is understood in the sense of (8), so that

P̂ (x, x ′; q) = iδ(x2 − x ′
2) sgn q1θ(q1(x1 − x ′

1))

×
N∑

n=1

{tn	̃(x, λn)
̃(x ′, λn) + tn	̃(x, λn)
̃(x ′, λn)}

− iδ(x2 − x ′
2) sgn q1

N∑
n=1

θ(|λn�| − |q1|)

×{tnθ(q1λn�)	̃(x, λn)
̃(x ′, λn) + tnθ(−q1λn�)	̃(x, λn)
̃(x ′, λn)}.
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Again, thanks to (129) the first term cancels out and we get

P̂ (x, x ′; q) = −iδ(x2 − x ′
2) sgn q1

N∑
n=1

θ(|λn�| − |q1|)

×{tnθ(q1λn�)	̃(x, λn)
̃(x ′, λn) + tnθ(−q1λn�)	̃(x, λn)
̃(x ′, λn)}. (130)

This suggests the introduction of q1-dependent solutions of the nonstationary Schrödinger
equation

	̃n(x, q1) = θ(|λn�| − |q1|)
√

2π{θ(q1λn�)	̃(x, λn) + θ(−q1λn�)	̃(x, λn)}, (131)

̃n(x, q1) = θ(|λn�| − |q1|)

√
2π{θ(q1λn�)
̃(x, λn) + θ(−q1λn�)
̃(x, λn)}, (132)

which we call auxiliary Jost solutions.
Then we rewrite (130) as

P̂ (x, x ′; q) = δ(x2 − x ′
2)

1

2π

N∑
n=1

ϑn(q1)	̃n(x, q1)
̃n(x
′, q1), (133)

where

ϑn(q1) = −i sgn q1{θ(q1λn�)tn + θ(−q1λn�)tn}. (134)

Thus the operator P results to be a sum of operators that are different from zero in the intervals
[−|λn�|, |λn�|] and continuous at x1 = x ′

1. In particular,

P(q) = 0 for |q1| > max
n

|λn�|.
Finally, inserting into (68) equation (66) and equations (82), (83) relating the dressing operators
to the Jost solutions and the expression obtained for P in (133) we get the completeness relation
for the Jost solutions∫

dα 	̃(x;α + iq1)t (α + iq1)
̃(x ′;α + iq1) +
N∑

n=1

ϑn(q1)	̃n(x, q1)
̃n(x
′, q1)

= 2πδ(x1 − x ′
1), for x2 = x ′

2. (135)

4.2. Properties of auxiliary Jost solutions

Functions 	̃n(x, q1) and 
̃n(x, q1) by definitions (131), (132) obey the nonstationary
Schrödinger equation and, correspondingly, its dual. Their conjugation property

	̃n(x, q1) = 
̃n(x,−q1),

follows from (86). These functions are different from zero on the interval |q1| < |λn�| only,
that guarantees boundedness of e−q1x1	̃n(x, q1) and eq1x1
̃n(x, q1) when x1 goes to infinity.
As a result the kernel P(x, x ′; q) defined by (31) is tempered distribution with respect to all its
variables that proves that operator P(q) belongs to the space of operators under consideration.
The naturally appeared above piecewise dependence of functions 	̃n(x, q1) and 
̃n(x, q1) on
q1 remembers the same, but nontrivial, dependence discovered in studying the perturbation
of the one-line potential in [18, 19]. It is necessary to mention that functions 	̃n(x, q1) and

̃n(x, q1) are discontinuous at q1 = 0, while, thanks to (129), P(q) is continuous at this point.

To study the discontinuity of these functions at q1 = 0, we use the standard notation
(cf (24)) for the right and left limits at q1 = 0 and we write

	̃±
n (x) =

√
2π{θ(±λn�)	̃(x, λn) + θ(∓λn�)	̃(x, λn)},


̃±
n (x) =

√
2π{θ(±λn�)
̃(x, λn) + θ(∓λn�)
̃(x, λn)}.
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To find relations between these limiting values we have to partially invert relations in (127)
and (128). Since our construction is symmetric with respect to the λns, we can renumber
them in such a way, say, that the λns with n = 1, . . . , s − 1 are in the upper half plane and the
λns with n = s, . . . , N are in the lower half plane. Correspondingly, the matrix C decomposes
as follows:

C =
(

C+ Z

Z† C−

)
, (136)

where C± are the matrices, positive and negative definite, introduced in (117), and where
Z,Z†, which are mutually adjoint, are rectangular matrices just filling the C matrix. By
introducing the vectors

	+(λ) = (
	̃+

1, . . . , 	̃
+
s−1

)
	−(λ) = (

	̃−
s , . . . , 	̃−

N

)
	+(λ) = (

	̃−
1 , . . . , 	̃−

s−1

)
	−(λ) = (

	̃+
s , . . . , 	̃

+
N

)
and the diagonal matrices

τ = diag{τj }, t = diag{tj },
decomposed in the diagonal matrices τ± and t± in analogy to (136), equation (127) can be
rewritten as

	+(λ)t+ = i	+(λ)τ+C+τ
†
+ + i	−(λ)τ−Z†τ †

+,

	−(λ)t− = i	+(λ)τ+Zτ
†
− + i	−(λ)τ−C−τ

†
−.

Solving the last equality for 	−(λ) and inserting the result into the first one, we get

	̃+
m(x) =

N∑
n=1

	̃−
n (x)ϑ−

n c′
nm,

where the matrix C ′ = ‖c′
mn‖N

m,n=1 equals

C ′ =
((

t−1
+

)†
τ+ 0

0
(
τ−1
−

)†
) (

C+ − ZC−1
− Z† iZC−1

−
−iC−1

− Z† −C−1
−

)(
τ
†
+t−1

+ 0
0 τ−1

−

)
and ϑ+

n is one of the limiting values of (134):

ϑ±
n = ∓i θ(±λn�)tn ∓ i θ(∓λn�)tn,

that in analogy with (101), (102) can also be defined as

ϑ±
n = ∓i res

k=λn�±i|λn�|
t (k).

Thanks to the conditions on matrix C given in section 3.4, the matrix C ′ is Hermitian and
positive. The first property is obvious. In order to check the second one we write for an
arbitrary vector (v+, v−)(
v†

+, v
†
−
) (

C+ − ZC−1
− Z† iZC−1

−
−iC−1

− Z† −C−1
−

) (
v+

v−

)
= v†

+C+v+ − [v− − iZ†v+]†C−1
− [v− + iZ†v+],

that proves that conditions (117) are equivalent to condition C ′ > 0.
Now relation for the functions 
̃±

n (x) follows by complex conjugation, taking into account
that

	̃±
n (x) = 
̃∓

n (x), ϑ±
n = ϑ∓

n .

Let us mention that the only dependence on the signs of λn� enters in the functions τ(k) in
(98), and then in the spectral data (76). All other objects of our constructions depend on |λn�|
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only. This means that in the case of the zero background potential u(x), when both f ± and
f̃ ± are identically equal to zero, without loss of generality we can chose in addition to (97)
λn� > 0 (n = 1, 2, . . . , N).

On the other hand in the case of the nonzero background potential solutions corresponding
to λn with opposite sign are different, as was shown in [20].

Finally, let us mention that relation P 2 = P gives the scalar product

1

2π

∫
dx1 
̃m(x, q1)	̃n(x, q1) = δmnθ(|λm�| − |q1|)

ϑm(q1)
, (137)

that takes a more complicated form if we turn back to the original solutions.

4.3. Operators L� and M�

In order to find L� we can use the first equality in (90) applying L̃ to P. Then in terms of the
hat-kernels we use that 	̃±

m(x) is annulated by L̃, so

L̂�(x, x ′; q) = −δ′(x2 − x ′
2)

1

2π i

N∑
n=1

ϑn(q1)	̃n(x, q1)
̃n(x
′, q1). (138)

Now it is easy to check directly that

PL� = L�P = L�,

as it also follows from (90) and (55).
In section 3.3 we proved that in order to obtain M� it is enough to find, first, a general

(belonging to our space of operators) solution X of the system (95) and then to find a special
X satisfying (96).

The expression for L̂� in (138) suggests that the general solution X of (95) is given by

X̂(x, x ′; q) = − sgn q1

2π i

N∑
n=1

ϑn(q1)gm(x2, x
′
2; q)	̃n(x, q1)
̃n(x

′, q1), (139)

with gm(x2, x
′
2; q) such that X(x, x ′; q) ∈ S ′, but otherwise arbitrary function of the written

arguments. This can be verified directly by using the representation of P̂ and the orthogonality
(137).

Thus we take M̂� in the form (139) and, according to the discussion at the end of
section 3.1, we fix the unknown function by requiring that equations (96) for X = M� are
satisfied. We get

M̂�(x, x ′; q) = 1

2π i

N∑
n=1

ϑn(q1){θ(x2 − x ′
2) + gm(q)}	̃n(x, q1)
̃n(x

′, q1), (140)

with gm(q) to be chosen in such a way that M�(x, x ′; q) is bounded at space infinity. It results
that

M�(x, x ′; q) = sgn(x2 − x ′
2)

2π i
e−q(x−x ′)

×
N∑

n=1

ϑn(q1)θ((q2 − 2λn�q1)(x2 − x ′
2))	̃n(x, q1)
̃n(x

′, q1) (141)

obtained for

gm(q) = −θ(−q2 + 2λm�q1) (142)

is a well-defined bounded operator.
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Since the 	̃s and 
̃s are bounded we need to only consider the region of variables where
the exponent e−q(x−x ′) is growing. Since, thanks to the choice (142) in each term on the rhs of
(140)

−q2(x2 − x ′
2) � −2λn�q1(x2 − x ′

2)

the behaviour of e−q(x−x ′) for q1 > 0 cannot be worse than e−q1((x1−x ′
1)+2λn�(x2−x ′

2)) and, then,
since |q1| � |λn�|, no worse than θ(±λn�) e∓��(λn)(x−x ′). But in the interval 0 � q1 � |λn�|
where 	n and 
n are different from zero

θ(±λn�) e∓��(λn)(x−x ′)	̃n(x, q1)
̃n(x
′, q1)

= 2πθ(±λn�) e−i��(λn)(x−x ′)χ̃ (x, λn� + i|λn�|)̃ξ (x ′, λn� + i|λn�|)
is bounded. Analogously for q1 < 0. This proves that M� is bounded.

We are left with the explicit construction of ζMζ †. From (70) and the conjugation
properties of the Jost solutions we have

ζMζ † = ν̃τωMντ †ω̃

and, then, from (17), (20) and (66)

ζMζ † = ν̃T M0ω̃.

In the p-space this reads

(ζMζ †)(p; q) =
∫

dp′ ν̃(p − p′; q1 + p′
1)

t (q1 + p′
1)

q2 + p′
2 − (q1 + p′

1)
2
ω̃(p′; q1)

and shifting p′, that is naming p′ + q� = α,

(ζMζ †)(p; q) =
∫

dα ν̃(p − α + q�;α1 + iq1)
t (α1 + iq1)

α2 + iq2 − (α1 + iq1)2
ω̃(α − q�; q1).

Recalling (37) and inverting (6) we derive for ζMζ † in the x-space

(ζMζ †)(x, x ′; q) = 1

(2π)2

∫
dα

e−iα(x−x ′)t (α1 + iq1)

α2 + iq2 − (α1 + iq1)2
χ̃ (x;α1 + iq1)̃ξ (x ′;α1 + iq1),

and, finally, integrating over α2, and summing up M� as indicated in (141) we get for the hat
version of the resolvent M̃̂̃M(x, x ′; q) = sgn(x2 − x ′

2)

2π i

∫
dα1θ((q2 − 2α1q1)(x2 − x ′

2))t (α1 + iq1)	̃(x;α1 + iq1)

× 
̃(x ′;α1 + iq1) +
sgn(x2 − x ′

2)

2π i

N∑
n=1

ϑn(q1)θ((q2 − 2λn�q1)(x2 − x ′
2))

× 	̃n(x, q1)
̃n(x
′, q1). (143)

It is worthwhile to note that on the rhs of this formula for M̃ the poles of t (q1) at
q1 = λn and at q1 = λn in the first term generate discontinuities at q1 = ±λn� which cancel
exactly the discontinuities of the second term, due to the fact that the auxiliary Jost solutions
	n(q1),
n(q1) are identically zero outside the strip |q1| � |λn�|.

By using the reduction procedures indicated in (32) and (33) from this explicit expression
for the resolvent one can derive the generalization of the standard Green’s function for Jost and
advanced/retarded solutions to the case of N solitons superimposed to a generic background.
Thanks to the fact that they are derived from the resolvent they result both to be bilinear in
terms of the Jost and auxiliary Jost solutions. The use of these Green’s functions and other
ones suggested by studying the properties of the resolvent is crucial in extending the IST to
potentials obtained by perturbing the potential considered in this paper by adding to it an
arbitrary smooth rapidly decaying function of both spatial variables. This is performed in a
forthcoming paper following the method developed in [18].
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